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Abstract

We review our recent work towards quantum communication in a solid-state environment with qubits
carried by electron spins. We propose three schemes to produce spin-entangled electrons, where the
required separation of the partner electrons is achieved via Coulomb interaction. The non-product spin-
states originate either from the Cooper pairs found in a superconductor, or in the ground state of a
quantum dot with an even number of electrons. In a second stage, we show how spin-entanglement
carried by a singlet can be detected in a beam-splitter geometry by an increased (bunching) or decreased
(antibunching) noise signal. We also discuss how a local spin-orbit interaction can be used to provide
a continuous modulation of the noise as a signature of entanglement. Finally, we review how one can
use a quantum dot as a spin-filter, a spin-memory read-out, a probe for single-spin decoherence and,
ultimately, a single-spin measurement apparatus.

1. Introduction

The goal of the growing field of spintronics [1, 2] is to harness the spin degree-of-freedom of the electron
in a solid-state environment. By going beyond the manipulation of the electron charge found in standard
electronics, one pursues the development of new devices that use specifically the electron spin: for instance,
magnetic read-out heads for computer hard drives, single-spin memories, or spin transistors [3, 4]. One in-
gredient is the injection and detection of spin-polarized currents, which has now been studied experimentally
with various approaches [5, 6, 7]. A more ambitious step is to consider quantum computation [8], for which
it has been proposed to use the electron spin as a qubit [9]. This naturally requires coherent manipulation
of the quantum spin-state, which is limited by decoherence. The issue of electron spin decoherence in semi-
conductors has found positive support from a number of experiments, which have now demonstrated long
decoherence times (exceeding 100 ns) for electron spins in bulk n-doped GaAs, as well as coherent transport
of spins over distances up to 100 µm [11]. In this work, we address the most fundamental issues concerning
the use of the electron spin in quantum communication [10], the basic resource being Einstein-Podolsky-
Rosen (EPR) pairs [12]. Here the motivation stems from for the desire to use the same physical qubit as
the one used for quantum computation [9], in order to have “on-chip” quantum communication without
transfers to photonic states. Secondly, these efforts open the path towards experimental tests of quantum
non-locality with massive particles in the solid state (via violation of Bell’s inequality [13]).

The first challenge is to create pairs of entangled electrons such as EPR pairs —that is, electrons whose
quantum state cannot be written as a product state, and where the two electrons are separately addressable
because of their spatial separation [14]. We describe in Section 2 how this can be achieved by extracting
a Cooper pair from a superconductor [15, 16] or the singlet ground state of a quantum dot with an even

427



SARAGA, BURKARD, EGUES, ENGEL, RECHER, LOSS

number of electrons [17]. The separation of the two electrons into distinct channels can be achieved with
the help of interactions found in nanostructures, such as the Coulomb blockade occurring in quantum dots
[15, 17], or the Coulomb repulsion in one-dimensional quantum wires [16]. In Section 3 we address the issue
of the measurement of entanglement, and describe a simple beam-splitter setup [18, 19, 20] where a noise
measurement can distinguish spin-singlet states from spin-triplets by probing the symmetry of the orbital
part of the electron-pair wavefunction. We describe in Section 4 how spin-filtering can be achieved with the
help of a quantum dot [21]. Such a device can also lead to the read-out of a spin-memory carried by an
electron in a quantum dot [21], and to the measurement of the decoherence rate of single spin in a quantum
dot via electron spin resonance and energy filtering [22]. We also refer the reader to our previous reviews
[23, 24], which the present article follows closely.

2. Producing mobile spin-entangled electrons

Quantum communication schemes and experimental tests of quantum non-locality require entangled
particles on demand, which is the motivation for a number of theoretical proposals [15, 16, 17, 25, 26,
27, 28, 29, 30, 31] for of an electron “entangler” —a device creating mobile entangled electrons which are
spatially separated. Interestingly, entanglement is rather the rule than the exception in nature, as it is a
direct consequence from Fermi statistics. For instance, the ground state of a Helium atom is the spin singlet
|↑↓〉 − |↓↑〉. The corresponding “artificial atom” [32], a quantum dot with two electrons, has also a singlet
ground state.

However, such “local” entangled singlets are not readily useful for quantum computation and commu-
nication, which require control over each individual electron as well as non-local correlations. In a first
setup —which has now been implemented experimentally [33]— one has considered two coupled quantum
dots with a single electron in each dot, where the spin-entangled electrons are already spatially separated by
strong on-site Coulomb repulsion (like in a Hydrogen molecule) [9]. Mobile entangled electrons could then be
obtained by simultaneously lowering the tunnel barriers coupling each dot to separate leads. Another source
of spin entanglement is provided by superconductors containing Cooper pairs in the spin-singlet state. It
was first shown in Ref. [25] how a non-local entangled state is created in two uncoupled quantum dots when
coupled to the same superconductor. In a non-equilibrium situation, the Cooper pairs can be extracted to
normal leads by Andreev tunnelling, thus creating a flow of entangled pairs [15, 16, 26, 27, 28, 29]

A crucial requirement for an entangler is to create spatially separated entangled electrons; hence one
must avoid whole entangled pairs entering the same lead. As it will be shown below, an efficient mechanism
for the suppression of undesired channels is provided by energy conservation and interactions —for instance,
Coulomb repulsion in quantum dots [15, 17] or in Luttinger liquids [16, 26]. Other recent spin-entangler
proposals used interferences in a quantum dot [30] or beam-splitters for spin-polarized currents [31]. Recently,
a simple tunneling barrier for edge states in the quantum Hall effect has been proposed to generate particle-
hole entanglement [34]. In the following, we discuss our proposals towards the realization of an entangler
that produces mobile non-local spin singlets [35].

2.1. Superconductor-based electron entanglers

Here we envision a non-equilibrium situation in which the electrons of a Cooper pair tunnel coherently by
means of an Andreev tunnelling event from a superconductor (SC) to two separate normal leads, one electron
per lead. Due to an applied bias voltage, the electron pairs can move into the leads thus giving rise to mobile
spin entanglement. Note that an (unentangled) single-particle current is strongly suppressed by energy
conservation as long as both the temperature and the bias are much smaller than the superconducting gap.
In the following we review two proposals where we exploit the repulsive Coulomb charging energy between
the two spin-entangled electrons in order to separate them so that the residual current in the leads is carried
by non-local singlets. We show that such entanglers meet all requirements for subsequent detection of spin-
entangled electrons via noise measurements of the charge current (see Sec. 3) or via single-spin measurements
(see Sec. 4), which could be used to perform experimental tests of Bell’s inequality.

428



SARAGA, BURKARD, EGUES, ENGEL, RECHER, LOSS

,

,,

r r

L L µ

TSD

DLT

1 2

21 llµ

SC µS

0 εε 0

D D21

TSD

DLT

U

LL
µ

µ l

l

1r1

t0

,

LL 2

SC µ S

,

2,r

t 0

(a) (b)

Figure 1. (a) Setup of the superconductor-double dot entangler. Two spin-entangled electrons forming a Cooper
pair in the superconductor SC tunnel (with amplitude TSD and from the points r1 and r2) to two quantum dots D1

and D2. The electrons then tunnel to normal Fermi liquid leads L1 and L2, with tunnelling amplitude TDL. The
superconductor and leads are kept at chemical potentials µS and µl . (b) An s-wave superconductor SC (at chemical
potential µS) is in contact with two quantum wires LL1 and LL2, which are described as infinitely long Luttinger
liquids (LL) (at chemical potential µl). The electrons of a Cooper pair can tunnel by means of an Andreev process
from two points r1 and r2 on the SC to the center (bulk) of the two quantum wires 1 and 2, respectively, with
tunnelling amplitude t0. Adapted from [15, 16].

2.1.1. Andreev entangler with quantum dots

The proposed entangler setup is described in Fig. 1(a). It consists of a SC with chemical potential µS which
is weakly coupled to two quantum dots (QDs) in the Coulomb blockade regime [32]. These QDs are in
turn weakly coupled to outgoing Fermi liquid leads, held at the same chemical potential µl. A bias voltage
∆µ = µS − µl is applied between the SC and the leads. The tunnelling amplitudes between the SC and the
dots, and between the dots and the leads, are denoted by TSD and TDL, respectively; see Fig. 1(a). The
two intermediate QDs in the Coulomb blockade regime have chemical potentials ε1 and ε2. These can be
tuned via external gate voltages, such that the tunnelling of two electrons via different dots into different
leads is resonant for ε1 + ε2 = 2µS [36]. As it turns out [15], this two-particle resonance is suppressed for
the tunnelling of two electrons via the same dot into the same lead by the on-site repulsion U of the dots
and/or the superconducting gap ∆. Next, we specify the parameter regime of interest here in which the
initial spin-entanglement of a Cooper pair in the SC is successfully transported to the leads.

Besides the fact that single-electron tunnelling and tunnelling of two electrons via the same dot should
be excluded, we also have to suppress transport of electrons which are already on the QDs. This could lead
to effective spin-flips on the QDs, which would destroy the spin entanglement of the two electrons tunnelling
into the Fermi leads. A further source of unwanted spin-flips on the QDs is provided by its coupling to the
Fermi liquid leads via particle-hole excitations in the leads. The QDs can be treated each as one localized
spin-degenerate level as long as the mean level spacing δε of the dots exceeds both the bias voltage ∆µ and
the temperature kBT . In addition, we require that each QD contains an even number of electrons with a
spin-singlet ground state. A more detailed analysis of such a parameter regime is given in [15] and is stated
here

∆, U, δε > ∆µ > γl, kBT and γl > γS . (1)

In (1) the rates for tunnelling of an electron from the SC to the QDs and from the QDs to the Fermi leads
are given by γS = 2πνS |TSD|2 and γl = 2πνl|TDL|2, respectively, with νS and νl being the corresponding
electron density of states per spin at the Fermi level. We consider asymmetric barriers γl > γs in order to
exclude correlations between subsequent Cooper pairs on the QDs. We work at the particular interesting
resonance ε1, ε2 ' µS , where the injection of the electrons into different leads takes place at the same orbital
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energy. This is a crucial requirement for the subsequent detection of entanglement via noise [18, 19, 20]; see
Sec. 3. In this regime, we have calculated and compared the stationary charge current of two spin-entangled
electrons for two competing transport channels in a T-matrix approach.

The ratio of the desired current for two electrons tunnelling into different leads (I1) to the unwanted
current for two electrons into the same lead (I2) is [15]

I1
I2

=
4E2

γ2

[
sin(kF δr)
kF δr

]2

e−2δr/πξ ,
1
E =

1
π∆

+
1
U
, (2)

where γ = γ1 + γ2. The current I1 becomes exponentially suppressed with increasing distance δr = |r1− r2|
between the tunnelling points on the SC, on a scale given by the superconducting coherence length ξ which
is the size of a Cooper pair. This does not pose a severe restriction for conventional s-wave materials with
ξ typically being on the order of µm. In the relevant case δr < ξ we find a slower, power-law suppression
∝ 1/(kF δr)2, where kF is the Fermi wave vector in the SC. On the other hand, we see that the effect of the
QDs consists in the suppression factor (γ/E)2 for tunnelling into the same lead [37]. Thus, in addition to
Eq. (1) we have to impose the condition kF δr < E/γ, which can be satisfied for small dots with E/γ ∼ 100
and k−1

F ∼ 1 Å. As an experimental probe to test if the two spin-entangled electrons indeed separate and
tunnel to different leads we suggest to join the two leads 1 and 2 to form an Aharonov-Bohm loop. In
such a setup the different tunnelling paths of an Andreev process from the SC via the dots to the leads can
interfere. As a result, the measured current as a function of the applied magnetic flux φ threading the loop
contains a phase coherent part IAB which consists of oscillations with periods h/e and h/2e [15]

IAB ∼
√

8I1I2 cos(φ/φ0) + I2 cos(2φ/φ0), (3)

with φ0 = h/e being the single-electron flux quantum. The ratio of the two contributions scales like
√
I1/I2

which suggest that by decreasing I2 (e.g. by increasing U) the h/2e oscillations should vanish faster than
the h/e ones.

We note that the efficiency as well as the absolute rate for the desired injection of two electrons into
different leads can even be enhanced by using lower dimensional SCs [16]. In two dimensions (2D) we find
that I1 ∝ 1/kF δr for large kF δr, and in one dimension (1D) there is no suppression of the current and only
an oscillatory behavior in kF δr is found. A 2D-SC can be realized by using a SC on top of a two-dimensional
electron gas (2DEG) [38], where superconducting correlations are induced via the proximity effect in the
2DEG. In 1D, superconductivity was found in ropes of single-walled carbon nanotubes [39].

Finally, we note that the coherent injection of Cooper pairs by an Andreev process allows the detection
of individual spin-entangled electron pairs in the leads. The delay time τdelay between the two electrons
of a pair is given by 1/∆, whereas the separation in time of subsequent pairs is given approximately by
τpairs ∼ 2e/I1 ∼ γl/γ

2
S (up to geometrical factors) [15]. For γS ∼ γl/10 ∼ 1µeV and ∆ ∼ 1meV we obtain

that the delay time τdelay ∼ 1/∆ ∼ 1ps is much smaller than the delivery time τpairs per entangled pair
2e/I1 ∼ 40ns. Such a time separation is indeed necessary in order to detect individual pairs of spin-entangled
electrons.

2.1.2. Andreev entangler with Luttinger-liquid leads

In Fig. 1(b) we propose a setup with an s-wave SC weakly coupled to the center (bulk) of two separate
one-dimensional leads (quantum wires) 1,2 which exhibit Luttinger liquid (LL) behavior, such as carbon
nanotubes [40]. The leads are assumed to be infinitely extended and are described by conventional LL-
theory [41]. Interacting electrons in one dimension lack the existence of quasi particles as in a Fermi liquid
and instead the low energy excitations are collective charge and spin modes. In the absence of backscattering
interaction the velocities of the charge and spin excitations are given by uρ = vF /Kρ for the charge and
uσ = vF for the spin, where vF is the Fermi velocity and Kρ < 1 for repulsive interaction between electrons
(Kρ = 1 corresponds to a 1D-Fermi gas). As a consequence of this non-Fermi liquid behavior, tunnelling
into a LL is strongly suppressed at low energies. Therefore one should expect additional interaction effects
in a two-particle tunnelling event (Andreev process) of a Cooper pair from the SC to the leads. We find
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that strong LL-correlations result in an additional suppression for tunnelling of two coherent electrons into
the same LL compared to single electron tunnelling into a LL if the applied bias voltage µ between the SC
and the two leads is much smaller than the energy gap ∆ of the SC.

To quantify the effectiveness of such an entangler, we calculate the current for the two competing processes
of tunnelling into different leads (I1) and into the same lead (I2) in lowest order via a tunnelling Hamiltonian
approach. Again we account for a finite distance separation δr between the two exit points on the SC when
the two electrons of a Cooper pair tunnel to different leads. For the current I1 of the desired pair-split
process we obtain, in leading order in µ/∆ and at zero temperature [16]

I1 =
I0
1

Γ(2γρ + 2)
vF
uρ

[
2Λµ
uρ

]2γρ

, I0
1 = πeγ2µFd[δr], (4)

where Γ(x) is the Gamma function and Λ is a short distance cut-off on the order of the lattice spacing in the
LL and γ = 4πνSνl|t0|2 is the dimensionless tunnel conductance per spin with t0 being the bare tunnelling
amplitude for electrons to tunnel from the SC to the LL-leads; see Fig. 1(b). The electron density of states
per spin at the Fermi level for the SC and the LL-leads are denoted by νS and νl, respectively. The current
I1 has its characteristic non-linear form I1 ∝ µ2γρ+1 with γρ = (Kρ +K−1

ρ )/4− 1/2 > 0 being the exponent
for tunnelling into the bulk of a single LL. The factor Fd[δr] in (4) depends on the geometry of the device
and is given here again by Fd[δr] = [sin(kF δr)/kF δr]2 exp(−2δr/πξ) for the case of a 3D-SC. In complete
analogy to subsection 2.1.1 the power law suppression in kF δr gets weaker in lower dimensions.

This result should be compared with the unwanted transport channel where two electrons of a Cooper
pair tunnel into the same lead 1 or 2 but with δr = 0. We find that such processes are indeed suppressed
by strong LL-correlations if µ < ∆. The result for the current ratio I2/I1 in leading order in µ/∆ and for
zero temperature is [16]

I2
I1

= F−1
d [δr]

∑
b=±1

Ab

(
2µ
∆

)2γρb

, γρ+ = γρ, γρ− = γρ + (1−Kρ)/2, (5)

where Ab is an interaction dependent constant [42]. The result (5) shows that the current I2 for injection of
two electrons into the same lead is suppressed compared to I1 by a factor of (2µ/∆)2γρ+ , if both electrons are
injected into the same branch (left or right movers), or by (2µ/∆)2γρ− if the two electrons travel in different
directions [43]. The suppression of the current I2 by 1/∆ reflects the two-particle correlation effect in the
LL, when the electrons tunnel into the same lead. The larger ∆, the shorter the delay time is between the
arrivals of the two partner electrons of a Cooper pair, and, in turn, the more the second electron tunnelling
into the same lead will feel the existence of the first one which is already present in the LL. This behavior
is similar to the Coulomb blockade effect in QDs discussed in the previous subsection. Concrete realizations
of LL-behavior are found in metallic carbon nanotubes with similar exponents as derived here [40]. In
metallic single-walled carbon nanotubes Kρ ∼ 0.2 [40], which corresponds to 2γρ ∼ 1.6. This suggests the
rough estimate (2µ/∆) < 1/kF δr for the entangler to be efficient. As a consequence, voltages in the range
kBT < µ < 100µeV are required for δr ∼ nm and ∆ ∼ 1meV. In addition, nanotubes were reported to be
very good spin conductors [44] with estimated spin-flip scattering lengths of the order of µm [26].

We remark that in order to use the beam-splitter setup to detect spin-entanglement via noise the two
LL-leads can be coupled further to Fermi liquid leads. In such a setup the LL-leads then would act as QDs
[45]. Another way to prove spin-entanglement is to carry out spin-dependent current-current correlation
measurements between the two LLs. Such spin dependent currents can be measured e.g. via spin filters
(Sec. 4).

2.2. Triple-quantum dot entangler

In a third proposal [17], described in Fig. 2, the pair of spin-entangled electrons is provided by the singlet
ground state of a single quantum dot DC with an even number of electron [46]. In the Coulomb blockade
regime [32], electron interactions in a dot create a large charging energy U that provides the energy filtering
necessary for the suppression of the non-entangled currents. These arise either from the escape of the pair
to the same lead, or from the transport of a single electron. The idea is to create a resonance for the joint
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Figure 2. (a) Setup of the triple quantum dot entangler. The central dot DC can accept 0, 1 or 2 electrons provided
with rate α from the source lead lC . Its ground state with 2 electrons is the spin singlet. The electrons can tunnel
coherently (with tunnelling amplitudes T0) between DC and the two secondary dots DL and DR, which can only
accept 0 or 1 electron and act as energy filters. Each electron from the singlet pair can finally tunnel out to the
drain leads lL and lR with a rate γ. (b) Energy level diagram (single-particle). The dashed arrows represent the
single-electron currents I1 and Ĩ1. Adapted from [17, 23].

transport of the two electrons from DC to secondary quantum dots DL and DR, similarly to the resonance
described in Sec. 2.1.1. For this, we need the condition εL + εR = 2εC , where εL and εR are the energy
levels of the available state in DL and DR, and 2εC is the total energy of the two electrons in DC . On the
other hand, the transport of a single electron from DC to DL or DR is suppressed by the energy mismatch
εC ± U 6= εL, εR, where εC ± U is the energy of the 2nd/1st electron in DC [47].

We describe the incoherent sequential tunneling between the leads and the dots in terms of a master
equation [48] for the density matrix ρ of the triple-dot system (valid for kBT > γ). The stationary solution of
the master equation is found with MAPLE, and is used to define stationary currents. Besides the entangled
current IE coming from the joint transport of the electrons from DC to DL and DR, the solitary escape of
one electron of the singlet can create a non-entangled current I1, as it could enable a new electron coming
from the source lead to form a new spin-singlet with the remaining electron. Another non-entangled current
Ĩ1 can be present if only one electron is transported across the triple-dot system; see Fig. 2(b). The definition
of entangler qualities Q = IE/I1 and Q̃ = IE/Ĩ1 enables us to check the suppression of these non-entangled
currents.

In Fig. 3 we present results in the case where εR = εC . In (b) we see the two-electron resonance at
εL = εC = εR, which creates mobile entangled electrons with the same orbital energy (as required in the
beam-splitter setup to allow entanglement detection; see Section 3). The exact analytical expressions are
extremely lengthy, but we can get precise conditions for an efficient entangler regime by performing a Taylor
expansion in terms of α, γ, T0 (defined in Fig. 2). Introducing the conditions Q, Q̃ > Qmin

I away from
resonance (εL 6= εC) and Q, Q̃ > Qmin

II at resonance (εL = εC), we obtain the conditions [17]

|εL − εC | < 2T0/
√
Qmin

I , (6)

γ
√
Qmin

II /8 < T0 < U
√

4α/γQmin
II , (7)

illustrated in Fig. 3(b) and (c). We need a large U for the energy suppression of the one-electron transport,
and γ � T0 because the joint transport is a higher-order process in T0. The current saturates to IE → eα
when T 4

0 � U2γα/32 [see Fig. 3(d)]: then, the bottleneck process is the tunneling of the electrons from the
source lead to the central dot. We see in (a) that equal currents in the left and right drain lead, IL = IR,
are characteristic of the resonance εL = εC , which provides an experimental procedure to locate the efficient
regime.

Taking realistic parameters for quantum dots [32, 49] such as IE = 20 pA, α = 0.1 µeV and U = 1
meV, we obtain a maximum entangler quality Qmin

II = 100 at resonance, and a finite width |εL − εC| ' 6
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Figure 3. Quality and current of the triple-dot entangler, We take the parameters α = 0.1, γ = 1, T0 = 10, U = 1000
in µeV. (a) Entangled and non-entangled current in the left (IL) and in the right (IR) drain leads. The inset shows

the resonance in a larger scale. (b) Quality Q and Q̃, around the resonance at εL − εC = 0 where the entangled

current dominates. In gray, the width of the resonance defined by Q, Q̃ > Qmin
I = 10 is |εL−εC| < 6µeV, as predicted

by Eq.(6). (c) Q and Q̃ as a function of T0 at resonance (εL = εC). In gray, the region where the quality of the

entangler is Q, Q̃ > Qmin
II = 100 corresponding to Eq. (7). (d) Saturation of the entangled current IE. Adapted from

[17].

µeV where the quality is at least Qmin
I = 10. It is crucial to avoid resonances with excited levels E′ in DL

or DR, as this could allow the undesired unentangled one-electron transport. In order to maintain a 90%
efficiency, one needs a minimum distance of ∼ U/5 between E′ and the level of the second electron in DC .
This can be achieved by tuning the excited levels away with the help of a perpendicular magnetic field. To
avoid completely the excited levels requires large energy levels spacings ∆ε ' 2U , which can be found in
vertical quantum dots or carbon nanotubes [32]. Finally, we can estimate the relevant timescales by simple
arguments. The entangled pairs are delivered every τpairs ' 2/α ' 15 ns. The average separation between two
entangled electrons within one pair is given by the time-energy uncertainty relation: τdelay ' 1/U ' 0.6 ps,
while their maximum separation is given by the variance of the exponential decay law of their escape into
the leads: τmax ' 1/γ ' 0.6 ns. In conclusion, the singlet spin state is preserved throughout the transport
process as τdelay and τmax are both well below reported spin decoherence times (in bulk) of 100 ns [11].

3. Dectecting electronic entanglement

So far, photonic entanglement has been successfully demonstrated in various experiments, and used to
exhibit quantum non-locality via Bell’s inequality measurements [50] as well as quantum communication
schemes such as teleportation or cryptography [51]. Here we address similar issues regarding the demonstra-
tion of electron spin entanglement in a mesoscopic system. The main idea is to exploit the unique relation
between the symmetry of the orbital state and the spin states, which allows a detection of the spin state
via measurements of the charge (orbital) degree of freedom of the electrons. More precisely, information
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Figure 4. Beam-splitter for the detection of entangled electrons. An entangler (see Section 2) feeds a pair of
entangled electrons, one in lead 1 and the other one in lead 2. The beam-splitter mixes the two current in order to
induce scattering interferences; t, r are the transmission and reflection amplitudes. The resulting noise is measured
in leads 3 and 4. One finds an enhanced noise (bunching) if the entangled provides spin-singlets |S〉 or, on the
contrary, noise reduction if the entangler provides the entangled spin triplets |T0〉. One also obtains noise reduction
if non-entangled triplets |T±〉 are simultaneously injected. The reference noise is the shot noise found in a single
channel. Adapted from [18, 19].

beyond the average current is required, and one must consider the particle-particle correlations found in
noise measurements [52, 53].

It has been known for a long time [54, 55] that increased correlations in the particle current (i.e., noise)
are found for bosons (such as photons) going through a beam-splitter; such phenomenon has been termed
“bunching”. Recently, the opposite behaviour for fermions (called “antibunching”) has been demonstrated
experimentally for electrons in mesoscopic systems [56], as well as for free electrons [57]. However, it is in
fact the symmetry of only the orbital part of the two-particle wavefunction which is relevant for the noise;
hence one should expect antibunching only for two particles whose spins are in one of the three triplet states
|T0〉 = (|↑↓〉+ |↓↑〉)/

√
2, |T±〉 = |↑↑〉, |↓↓〉. On the other hand, a spin singlet state |S〉 = (|↑↓〉 − |↓↑〉)/

√
2 has

a symmetric orbital wave function, which should therefore exhibit bunching. Hence, observing an increase
of the noise of particles indicate bunching and, consequently, an entangled spin-singlet, while a decrease
corresponds to antibunching and a spin-triplet state, which can be entangled or unentangled [18].

3.1. Noise in a beam-splitter setup

We assume that an entangler (for instance, one of the three proposals of Section 2) generates pairs of
entangled electrons which are directly injected in the two incoming arms (leads 1 and 2) of a beam-splitter;
see Fig. 4. The goal of the beam-splitter is to create two-particle interference effects, by allowing electrons
to be transmitted (lead 1→ lead 4 or 2→ 3) with an amplitude t, or to be reflected (1→ 3 or 2→ 4) with
an amplitude r. Here we neglect back-scattering (1→ 1, 1→ 2,2→ 1 or 2→ 2), which is considered in Ref.
[20]. Then conservation of probability reads T + R = 1 with T = |t|2, R = |r|2. The quantity of interest
in this setup is the noise (the current-current correlation) measured in lead 3 (autocorrelation), or between
leads 3 and 4 (cross-correlation).

We calculate transport quantities using the standard scattering theory [53] for non-interacting particles
[58], at zero temperature and for zero bias. We consider the entangled incident states in leads 1 and 2

|ψT/S〉 =
1√
2

(
a†q,1,↑a

†
q′,2,↓ ± a

†
q,1,↓a

†
q′,2,↑

)
|Ψ0〉 (8)

corresponding to a spin triplet (+) or singlet (-). Here |Ψ0〉 denotes the filled Fermi sea in both leads, and
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a†q,l,σ is the creation operator for an electron in lead l with momentum q and spin σ. We consider that
only one transverse channel is available in each lead, so that q,q′ translates into the two energies ε, ε′ of the
incoming electrons. The unpolarized current operator for lead l can be written as [53]

Îl(t) =
e

hν

∑
σεε′

(
a†ε,l,σaε′,l,σ − b

†
ε,l,σbε′,l,σ

)
ei(ε−ε

′)t/h̄, (9)

with ν the density of states in the leads. The operator a†ε,l,σ creates an incoming electron with energy ε,
while bε,l,σ =

∑
l′ Sll′aε,l′,σ correspond to outgoing electrons. The scattering matrix Sll′ is assumed to be

spin- and energy-independent, and reads t = S41 = S32, r = S42 = S31,S12 = S34 = Sll = 0. Note that the
average current |〈Îl〉| = e/hν does not depend on the orbital symmetry of the wavefunction. Introducing
the fluctuations δÎl = Îl − 〈Îl〉, we define their spectral density Sll′ (ω) between leads l and l′ and calculate
it for an incoming state |ψT/S〉:

Sll′ (ω) = lim
τ→∞

hν

τ

∫ τ

0

dteiωtRe〈ψT/S |δÎlδÎl′ |ψT/S〉. (10)

For the noise at zero frequency (ω = 0) we obtain [18]

S33 = S44 = −S34 = 2
e2

hν
T (1− T )(1 ∓ δεε′ ). (11)

Here the upper sign corresponds to an incoming pair in one of the spin triplets states (entangled or not), while
the lower sign corresponds to a spin singlet. This result contains the standard shot noise [53] S = 2e2T (1−T )
found for uncorrelated particles going through a tunnel barrier in one channel. The second term depends
crucially on the spin state, and yields a doubling of the shot noise for singlets (bunching), and a suppression
to zero noise for triplets (antibunching). Note that the δij function requires to have electrons injected
with the same energies ε = ε′; this is due to the Pauli exclusion principle which only applies for identical
quantum states. Note that S33 = −S34 is simply due to conservation of particles numbers and the absence
of backscattering.

The result described above has recently been generalized for arbitrary incoming two-electron (mixed)
spin states χ entering the beam-splitter [20]. A lower bound for the entanglement of formation E of pairs of
electron spins injected into a mesoscopic conductor can be determined in terms of S33 from the inequality

E(χ) ≥ E(F ) = H2(1/2 +
√
F (1− F )), (12)

where H2(x) = −x logx− (1− x) log(1− x) is the dyadic Shannon entropy and F = S33/4eIT (1− T ). The
lower bound can also be expressed in terms of the cross-correlators, which turn out to be more robust against
backscattering from the beamsplitter [20]. A variable inhomogeneous magnetic field gives rise to a useful
lower bound for the entanglement of arbitrary states. Spin relaxation (T1 processes) and decoherence (T2)
during the ballistic coherent transmission of carriers can also be taken into account within Bloch theory,
leading to a reduction of the entanglement of formation during the transmission through the beamsplitter.

In conclusion, performing noise measurements in the outgoing leads of the beam-splitter presented in
Fig. 4 can uniquely indicate a spin-singlet state; moreover, a lower bound for a measure of entanglement
(the entanglement of formation) can be directly inferred from the noise power. Distinguishing between
the entangled and unentangled triplet stated requires either a single-spin measurement (which could be
accomplished using a single-spin measurement device discussed in Sec. 4) or a single-spin rotation in the
ingoing arm. In both cases, the presence of spin-orbit interaction can help [19], which will be explained in
more details in the next Section.

3.2. Beam-splitter with local Rashba interaction

An extension of the beam-splitter proposal discussed above is to consider a spin-orbit Rashba interaction
[59, 3] as a means to rotate one of the spins. This offers the possibility to continuously change from
bunching to antibunching, and find therefore a modulation in the noise signal, which is easier to observe

435



SARAGA, BURKARD, EGUES, ENGEL, RECHER, LOSS

than a doubling or reduction as above. We consider a local Rashba interaction in one of the incoming leads
(say, lead 1) over a finite length L. Such interaction is present in low-dimensional systems with structural
inversion asymmetry, and arises from the gradient of the confining potential at the interface between two
different materials. Importantly, its strength (denoted by the spin-orbit constant α) can be controlled via the
voltage of external top and back gates defining the asymmetry [60]. The effect of the spin-orbit interaction
is to coherently rotate the spin. For instance, an electron entering the Rashba region in a spin-up state will
emerge with also a spin-down component [19]:

| ↑〉 −→ cos θR/2| ↑〉+ sin θR/2| ↓〉 (13)

up to an irrelevant global phase factor. Here we have introduced the Rashba angle θR = 2mαL/h̄2. It is
then clear that rotating only one spin will change the state from a spin-singlet to a superposition of the
different triplets. This is reflected in the expression for the noise [19]:

S33(θR) = 2
e2

hν
T (1− T ) ×

 1 + δεε′ cos θR , singlet |S〉
1− δεε′ cos θR , triplet |T0〉
1− δεε′ cos2(θR/2) , triplet |T±〉

. (14)

Here all the spin-states are defined along the z axis perpendicular to the plane of transport. As a consequence,
a noise measurement will display a sinusoidal modulation as a function of θR, which can be varied via α,
provided that one injects a pair of entangled electrons (in state |S〉 or |T0〉) with the same orbital energy
ε = ε′.

4. A quantum dot as a spin filter, a spin memory, and a probe of
single-spin decoherence

Crucial building blocks needed for quantum computation and communication comprise single-spin mea-
surement devices, spin-filters and read-out devices for a spin-memory. As we shall see below, such devices
can be implemented with a quantum dot in the Coulomb blockade regime. The essential component is a
spin-filter, which only lets through electrons with specific spin direction (say, ↑). With such an apparatus
one could think of a single-spin measurement device, obtained by coupling the spin-filter to a single-electron
transistor [61], so that one has a large current through the transistor only if the single spin was is the
specified direction, and was therefore allowed to pass through the spin-filter.

We use similar approaches for the discussion of the different devices below, based on a tunneling Hamil-
tonian, and first- and second-order approximations. At resonance, the dominant contribution Is to the
current arises from sequential tunneling (ST) [32]; it corresponds to first-order tunneling between the leads
and the dot, and the electron number on the dot fluctuates. The smaller second-order contribution is the
cotunneling (CT) current Ic [62], where the number of electrons on the dot only changes in the virtual
intermediate state. An important requirement is that the spin-degeneracy must be lifted with different Zee-
man splittings in the dot and in the leads, e.g. by applying local magnetic fields or by using materials with
different effective g factors for leads and dot. Also, we consider small dots with large energy-level spacings
δ > ∆µ = µ1 − µ2 > 0, kBT , where µ1,2 are the chemical potentials of the source and drain lead.

4.1. Spin filter

The spin-filter [21] is described in Fig. 5(a). It is important to have a Zeeman splitting which is negligeable
in the leads and only significant in the dot, where it is ∆z = µB|gB|. We consider an odd number of electrons
in the dot, with a total spin 1/2 (shell filling of singlet states). Because of the Zeeman coupling, the topmost
electron is in the spin ground state | ↑〉. In the sequential tunneling regime (µ1 > ES > µ2) the only state
accessible for transport is the spin singlet with energy ES . Thus, only electrons with spin ↓ can tunnel onto
and off the dot, implying that the outgoing current Is is spin-↓ polarized.

However, one should also check the small cotunneling contribution to the current, Ic, which can contain
a spin-↑ component. This potentially reduces the efficiency of the spin-filtering effect. We find a degree of
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Figure 5. (a) A spin filter from a quantum dot. The dot is in the sequential tunneling regime, µ1 > ES > µ2 >
ES − ∆z, and coupled to unpolarized leads with chemical potentials µ1, 2. The singlet/triplet levels are ES/ET+

(counting from E↑ = 0) and the Zeeman splitting (only in the dot) is ∆z = gµBBz. (b) Setup to measure single-spin
decoherence time, obtained by shifting the energy levels such that ES > µ1 > ES−∆z > µ2. If initially the spin-state
on the dot is |↑〉, sequential tunneling is blocked by energy conservation. An ESR pulse (Rabi flip, drawn as wavy
line) can excite the dot and unblock it for spin ↑ electrons coming from lead 1. Finally, spin ↑ or ↓ electrons can tunnel
from the singlet state into lead 2. (c) Spin inverter (combined setup). The spin state of dot 1 switches the current as
in (b), while the second dot 2 acts as a spin filter, in the regime E1

S ≈ E2
S , E1

S > µ1 > E1
S −∆1

z, E
2
S > µ2 > E1

S −∆2
z,

|tDD| < |tDL2|, ∆1
z 6≈ ∆2

z. This allows the transition sequence ↑ k↑ 1
k↑

2
ESR−→ ↑ k↓

1
k↑

2 → k↑↓ 1
k↑

2 → k↑ 1
k↑↓

2

→ k↑ 1
k↑

2
↓ . Adapted from [24, 21, 22].

spin-polarization [21]

Is(↓)
Ic(↑)

∼
min{∆2

z, (ET+ − ES)2}
γmax{kT,∆µ} , (15)

where we considered equal tunneling rates γ between the dot and both source and drain leads. The ST
regime corresponds to γ < kT,∆µ; if in addition kT,∆µ < ∆z, |ET+ − ES |, the ratio Eq. (15) is large and
the spin-filter is efficient. Such a spin filter has a broad range of applications, as it could provide highly
spin-polarized current as required by most spintronics devices [1].

4.2. Read-out of a spin memory

Here we consider the storage a bit of information in a single-spin in a quantum dot (a “spin-memory”),
for which one needs ways to read out the spin-state. This could be performed with a setup similar to the
spin-filter: one merely needs to connect it to spin-polarized leads [5], which will be able to pass electrons
through the dot only if the polarization is opposite from the single-spin state [21].

We consider the situation where the spin polarization in both leads is ↑. If the dot (the spin-memory)
is in state | ↓〉, the electrons of the source lead are allowed to tunnel onto the dot by forming a singlet, and
then to tunnel out to the other lead, creating a finite current Is 6= 0. Since the leads can only absorb spin-up
electrons, these are the only allowed sequential tunneling transitions, i.e. ↑ k↓ → k↑↓ → k↓ ↑ . However, if
the dot is in state | ↑〉, no electron can tunnel onto the dot because the formation of the triplet is forbidden
by energy conservation, and one has no ST current, Is = 0 —although there is a small cotunneling leakage
current Ic 6= 0. The ratio Is/Ic is given by Eq. (15), where the numerator becomes (ET+ −ES + ∆z)2 (since
here only the CT-process with an intermediate triplet state is possible). Therefore, the initial spin state of
the quantum dot can be detected by measuring the charge current through the dot.

The measurement efficiency can also be quantified by a detailled analysis of the read-out procedure [22].
For a dot with spin | ↓〉, the probablity for no electron being transmitted after a time t decreases exponentially:
P↓(t) = exp(−γt)(1 + γt). For example, after a time t = 2e/I the spin state can be determined with more
than 90% probability [22]. For a typical sequential tunneling current on the order of 0.1− 1 nA [32], this
measuring time is 0.3− 3 ns.
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4.3. Detection of single-spin decoherence

We have proposed a setup where, by applying an ESR field to the dot-spin, the single spin decoherence
time T2 can be determined by the line shape of the (stationary) sequential tunneling current through the
dot [22]. In this setup, the Zeeman splitting on the dot is large, ∆z = gµBB > ∆µ, kT , and different
from the Zeeman splitting of the leads, ∆leads

z 6≈ ∆z. The energy levels are tuned such that no sequential
tunneling current flows through the dot when it is in its ground state | ↑〉, see Fig. 5(b). However, if an ESR
field is present and produces Rabi-flips on the dot, current will flow through the dot involving state | ↓〉. By
calculating the stationary solution of the master equation within the rotating wave approximation we find
for the stationary current [22]

I(ω) ∝ V↓↑
(ω −∆z)2 + V 2

↓↑
. (16)

Thus, the current as a function of the ESR frequency ω has a resonant peak at ω = ∆z and width 2V↓↑ =
γS↑ + γS↓ + 2/T2. Here, γSσ denotes the rate for an electron to tunnel from a lead into the dot which was
initially in state |σ〉 = | ↑〉, | ↓〉. Thus, the linewidth of the current provides a lower bound on the intrinsic
single-spin decoherence time T2. For weak tunneling γSσ < 2/T2, this bond saturates, i.e. the width of the
peak becomes 2/T2. For finite temperatures in the linear response regime ∆µ < kT , the current has roughly
the standard sequential tunneling peak shape cosh−2[(ES − E↓ − µ)/2kT ] with µ = (µ1 + µ2)/2, while the
resonant structure of I(ω) [Eq. (16)] remains unaffected. At last we point out that if this setup is operated
at zero bias ∆µ = 0, only electrons with spin ↑ can tunnel onto the dot and only with spin ↓ off the dot.
Thus, the leads become locally spin-polarized. This concentration gradient acts as effective spin-dependent
chemical potential, leading to a finite spin-current while there is no charge current. Such spin-currents can
be detected e.g. via the (finite) noise of the charge current [18].

Furthermore, this device allows a time-resolved measurement of the spin state of the dot. This allows
to detect the Rabi oscillations of a single spin and the Zeno effect via the current Is(t) [22]. In order to
measure Is(t) an ensemble average is required, e.g. by using an array of (independent) dots or by time-series
measurement over a single dot.

4.4. Pumping

The setup described in the previous section can be used as an electron pump if one allows for spin-
dependent tunneling rates γ↑l 6= γ↓l between dot and lead l for electrons with spin ↑, ↓ [22]. The current at
zero bias ∆µ = 0 is driven with an externally applied ESR source and is proportional to γ↑1γ

↓
2 − γ

↓
1γ
↑
2 .

Spin-dependent tunneling rates are produced by spin-polarized leads [21], by spin-dependent tunneling
barriers or by the combined setup shown in Fig. 5(c). This setup uses an additional quantum dot as spin
filter and acts as a “spin inverter” which takes spin up electrons as input and produces spin down electrons
as output.

5. Conclusion

We have proposed and theoretically analyzed devices which address a number of milestones of quantum
communication protocols with electron spins in mesoscopic systems. For the creation of EPR-pairs, we have
proposed three different schemes for the preparation of spin-singlet electron pairs, and their injection into
solid-state quantum channels. In the second part, we have discussed an interference device able to distinguish,
via noise measurement, the entangled spin singlet from the spin triplet states. A local spin-orbit interaction
extends this proposal by allowing a continuously variable noise signature, controllable by external gates.
Finally, we have shown how one can use single quantum dots as fundamental tools for accessing quantum
information stored as a single spin. We have described a spin-filter, a spin-memory read-out, and, finally, a
device able to estimate the decoherence rate of a single-spin in a quantum dot —a crucial parameter for the
coherent manipulation of the fundamental quantum system that is an electron spin.
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